Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-(2,2'-Bi-1H-imidazole-1,1'-diyl)dipropanol

Tao Zhang and Hong-Ze Liang*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: lianghongze@nbu.edu.cn

Received 9 December 2008; accepted 19 December 2008
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=16.3$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$, unlike other unconjugated disubstituted biimidazole derivatives reported so far, the two imidazole rings in a trans conformation exhibit a large planar rotation angle of $51.27(4)^{\circ}$, and consist of halfmolecule asymmetric units related by a twofold rotation. The molecules are linked into a three-dimensional framework with a parallel laminated construction via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For background to $2,2^{\prime}$-biimidazole derivatives, see: Forster et al. (2004); Fortin \& Beauchamp (2000); Fu et al. (2007); Ion et al. (2007); Mao et al. (2003); Pereira et al. (2006); Xiao \& Shreeve (2005); Xiao et al. (2004). For other unconjugated 1,1'-disubstituted compounds, see: Barnett et al. (1997, 2002); Secondo et al. (1996, 1997). For the synthesis, see: Barnett et al. (1999)

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=250.30 \\
& \text { Monoclinic, } C 2 / c \\
& a=15.812(3) \AA \\
& b=9.5961(19) \AA \\
& c=9.3194(19) \AA \\
& \beta=119.44(3)^{\circ}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.948, T_{\text {max }}=0.970$
4715 measured reflections 1400 independent reflections 1183 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.104$
$S=1.07$
independent and constrained refinement
1400 reflections
86 parameters

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 9 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.89(2)$	$1.92(2)$	$2.8047(17)$	175
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.59	$3.5019(17)$	166
Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z-1$				

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was sponsored by the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholars (2006331), the Critical Projects in Science and Technology Department of Zhejiang Province (2007 C21113), the Education Committee of Zhejiang Province (20061696), the Natural Science Foundation of Ningbo City (2007 A610021), K. C. Wong Magna Fund in Ningbo University and Ningbo University (2005062). We thank Mr W. Xu for collecting the crystal data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2693).

References

Barnett, W. M., Baughman, R. G., Collier, H. L. \& Vizuete, W. G. (1999). J. Chem. Crystallogr. 29, 765-768.
Barnett, W. M., Baughman, R. G., Secondo, P. M. \& Hermansen, C. J. (2002). Acta Cryst. C58, o565-o567.
Barnett, W. M., Lin, G., Collier, H. L. \& Baughman, R. G. (1997). J. Chem. Crystallogr. 27, 423-427.
Forster, R. J., Walsh, D. A., Mano, N., Mao, F. \& Heller, A. (2004). Langmuir, 20, 862-868.
Fortin, S. \& Beauchamp, A. L. (2000). Inorg. Chem. 39, 4886-4893.
Fu, Y. M., Zhao, Y. H., Lan, Y. Q., Wang, Y., Qiu, Y. Q., Shao, K. Z. \& Su, Z. M. (2007). Inorg. Chem. Commun. 10, 720-723.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ion, L., Morales, D., Nieto, S., Perez, J., Riera, L., Riera, V., Miguel, D., Kowenicki, R. A. \& Mcpartlin, M. (2007). Inorg. Chem. 46, 2846-2853
Mao, F., Mano, N. \& Heller, A. (2003). J. Am. Chem. Soc. 125, 4951-4957.
Pereira, C. C. L., Costa, P. J., Calhorda, M. J., Freire, C., Rodrigues, S. S., Herdtweck, E. \& Romão, C. C. (2006). Organometallics, 25, 5223-5234.
Rigaku (1998). RAPID-AUTO. Rigaku Cooperation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSc Inc., The Woodlands, Texas, USA.

organic compounds

Secondo, P. M., Barnett, W. M., Collier, H. L. \& Baughman, R. G. (1996). Acta Cryst. C52, 2636-2638
Secondo, P. M., Baughman, R. G. \& Collier, H. L. (1997). J. Chem. Crystallogr. 27, 371-375.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xiao, J. C. \& Shreeve, J. M. (2005). J. Org. Chem. 70, 3072-3078.
Xiao, J. C., Twamley, B. \& Shreeve, J. M. (2004). Org. Lett. 6, 3845-3847.

supplementary materials

3,3'-(2,2'-Bi-1H-imidazole-1, ${ }^{\prime}$ '-diyl)dipropanol

T. Zhang and H.-Z. Liang

Comment

2,2'-Biimidazole ($\mathrm{H}_{2} \mathrm{biim}$) derivatives as versatile ligands are widely used in the construction of metal complexes (Ion et al., 2007; Pereira et al., 2006; Fortin et al., 2000). In addition to the study of metal complexes, attention has also been devoted to the polymeric systems (Fu et al., 2007; Forster et al., 2004; Mao et al., 2003) and the ionic liquids (Xiao et al., 2005, 2004). The title compound (I), as a hydroxy-terminated derivative can be easily synthesized by Michael addition of dianion biim $^{2-}$ to alkyl acrylate (Barnett et al., 1999) and subsequent mild reduction by NaBH_{4} in an excellent yield.

The crystal structure of (I), shown in Fig. 1, adopts a trans conformation, and consists of half-molecule asymmetric units related by a twofold rotation. Exceptionally, unlike the other unconjugated 1,1'-disubstituted compounds reported before (Barnett et al., 1997, 2002; Secondo et al., 1996, 1996), the imidazole rings of the investigated compound (I) exhibit a rather large torsion angle of 51.27 (4) ${ }^{\circ}$, as shown in Fig. 1. The terminal hydroxyl groups are responsible for this noncoplanarity. The imdazole rings are forced to rotate by intermolecular interactions via strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The N1-C4-C5-C6 moiety is essentially planar with an r.m.s. deviation of $0.054 \AA$. This plane is at angle of 71.90 (7) ${ }^{\circ}$ with respect to the adjacent imidazole ring, which is consistent with the reported analogous compounds referenced before. While the atom O 1 does not lie in the $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ plane, rather it lies $1.116 \AA$ from this plane. The bond length and bond angle in (I) are within normal ranges.

The molecules of (I) are linked into a three-dimensional framework with parallel laminated construction by a combination of one strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and the other weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1). It can be analyzed in terms of thousands of one-dimensional substructures, linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which generate series of two-dimensional sheets through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig.2).

Experimental

1, 1'-Di(ethylpropionato)-2,2'-biimidazole ($0.80 \mathrm{~g}, 2.40 \mathrm{mmol}$) was dissolved in absolute ethyl alcohol (50 ml). To this mixture was added batchly $\mathrm{NaBH}_{4}(0.906 \mathrm{~g}, 24.0 \mathrm{mmol})$. The mixture was heated to reflux for 3 h . Evaporating the solvent and added to $30 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ yield a transparent solution. Adjusting the PH of the solution to $8-9$ with $1 M \mathrm{HCl}$ led to a white suspension. The mixture was filtered, then the filtrate extracted with chloroform $(10 \mathrm{ml})$ three times. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ two times, dried by MgSO_{4}. After evaporating the solvent, the residue was chromatographed on silica gel. Elution with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(10: 1)$ afforded a white solid ($0.52 \mathrm{~g}, 86.7 \%$). Tetragonal crystals of the titled compound were formed by evaporating saturated petroleum ether/chloroform solution slowly.

Similarly, the title compound(I) can be synthesized by reduction of other 1,1'-di(alkylpropionato)-2,2??-biimidazole (al$\mathrm{kyl}=$ methyl, butyl) which was prepared according to the published procedure (Barnett et al., 1999) with NaBH_{4} in anhydrous ethyl alcohol or with LiAlH_{4} in anhydrous ethereal solution. The yields ranges from 44 to 85°.

supplementary materials

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93$ and $=0.97 \AA ; \mathrm{O}-\mathrm{H}=0.82 \AA)$ and $U_{\text {iso }}(\mathrm{H})$ values were taken to be equal to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$.

Figures

Fig. 1. A perspective view of (I) with the atom-labelling scheme, showing that the two imidazole rings are distinctly non-coplanar. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2. A perspective view of the three-dimensional framework with parallellaminated construction containing two sheets from [011] direction, showing the packing mode and the interactions of hydrogen bonds $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (pink dashed lines in the electronic version of the paper) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (green dashed lines in the electronic version). All H atoms not involved in the hydrogen-bond motifs have been omitted for clarity.

3,3'-(2,2'-Bi-1 H-imidazole-1,1'-diyl)dipropanol

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
$F_{000}=536$
$M_{r}=250.30$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=15.812$ (3) \AA
$b=9.5961$ (19) \AA
$c=9.3194(19) \AA$
$\beta=119.44(3)^{\circ}$
$V=1231.5(6) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1400 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.56 \times 0.48 \times 0.37 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295(2) \mathrm{K}$
ω scans
1400 independent reflections
1183 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.948, T_{\text {max }}=0.970$
4715 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.104$
$S=1.07$
1400 reflections
86 parameters
Primary atom site location: structure-invariant direct methods
$h=-20 \rightarrow 20$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0631 P)^{2}+0.3657 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.03257(9)$	$0.22372(12)$	$0.47224(14)$	$0.0366(3)$
H1	0.0646	0.2434	0.4134	0.044^{*}
C2	$-0.05565(9)$	$0.16313(12)$	$0.41318(14)$	$0.0375(3)$
H2	-0.0946	0.1336	0.3050	0.045^{*}
C3	$-0.00459(7)$	$0.20468(10)$	$0.66867(13)$	$0.0280(3)$
C4	$0.15367(7)$	$0.32897(11)$	$0.74530(14)$	$0.0328(3)$
H3	0.1970	0.3292	0.6993	0.039^{*}
H4	0.1869	0.2829	0.8516	0.039^{*}
C5	$0.13141(8)$	$0.47728(12)$	$0.76898(17)$	$0.0418(3)$
H5	0.0930	0.4771	0.8241	0.050^{*}
H6	0.0930	0.5207	0.6620	0.050^{*}
C6	$0.22260(8)$	$0.56240(12)$	$0.86937(16)$	$0.0390(3)$
H7	0.2635	0.5562	0.8189	0.047^{*}

H8	0.2048	0.6594	0.8674	0.047^{*}
N1	$0.06543(6)$	$0.25027(9)$	$0.63558(11)$	$0.0300(2)$
N2	$-0.07917(6)$	$0.15167(10)$	$0.53523(11)$	$0.0340(3)$
O1	$0.27596(7)$	$0.51756(11)$	$1.03437(12)$	$0.0475(3)$
H9	$0.3207(14)$	$0.460(2)$	$1.037(2)$	$0.073(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0423(6)$	$0.0386(6)$	$0.0319(6)$	$0.0015(5)$	$0.0206(5)$	$0.0000(4)$
C2	$0.0425(6)$	$0.0373(6)$	$0.0258(6)$	$-0.0003(4)$	$0.0114(4)$	$-0.0030(4)$
C3	$0.0253(5)$	$0.0265(5)$	$0.0287(6)$	$0.0014(4)$	$0.0107(4)$	$0.0005(4)$
C4	$0.0246(5)$	$0.0324(5)$	$0.0387(6)$	$-0.0004(4)$	$0.0134(4)$	$-0.0013(4)$
C5	$0.0285(6)$	$0.0333(6)$	$0.0525(8)$	$0.0020(4)$	$0.0114(5)$	$-0.0050(5)$
C6	$0.0330(6)$	$0.0316(5)$	$0.0477(7)$	$-0.0014(4)$	$0.0163(5)$	$-0.0033(5)$
N1	$0.0284(5)$	$0.0313(5)$	$0.0295(5)$	$0.0000(3)$	$0.0136(4)$	$-0.0014(3)$
N2	$0.0318(5)$	$0.0351(5)$	$0.0281(5)$	$-0.0035(4)$	$0.0093(4)$	$-0.0020(3)$
O1	$0.0407(5)$	$0.0592(6)$	$0.0391(6)$	$0.0028(4)$	$0.0168(4)$	$-0.0102(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.3536(18)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.3692(16)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{N} 2$	$1.3638(16)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{N} 2$	$1.3245(14)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.3595(14)$
$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.450(2)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.4697(14)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.5081(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$106.51(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	126.7
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	126.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$110.15(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	124.9
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 2$	124.9
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{N} 1$	$111.05(10)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3$	
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 3$	
N	$124.54(11)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$124.26(11)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 3$	$112.13(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 3$	109.2
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4$	109.2
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	109.2
$\mathrm{H} 3-\mathrm{C} 4-\mathrm{H} 4$	109.2
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	107.9
S	$112.29(9)$

$\mathrm{C} 4-\mathrm{H} 3$	0.9700
$\mathrm{C} 4-\mathrm{H} 4$	0.9700
$\mathrm{C} 5-\mathrm{C} 6$	$1.5151(16)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9700
$\mathrm{C} 5-\mathrm{H} 6$	0.9700
$\mathrm{C} 6-\mathrm{O} 1$	$1.4093(17)$
$\mathrm{C} 6-\mathrm{H} 7$	0.9700
$\mathrm{C} 6-\mathrm{H} 8$	0.9700
$\mathrm{O} 1-\mathrm{H} 9$	$0.89(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	109.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	109.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 6$	109.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 6$	109.1
$\mathrm{H} 5-\mathrm{C} 5-\mathrm{H} 6$	107.9
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$112.75(11)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 7$	109.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 7$	109.0
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 8$	109.0
C5-C6-H8	109.0
H7-C6-H8	107.8
C3-N1-C1	$106.62(10)$
C3-N1-C4	$127.45(10)$
C1-N1-C4	$125.51(10)$
C3-N2-C2	$105.68(10)$
C6-O1-H9	$105.3(12)$

Symmetry codes: (i) $-x, y,-z+3 / 2$.

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 9 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.89(2)$	$1.92(2)$	$2.8047(17)$	175
$\mathrm{C} 2 — \mathrm{H} 2 \cdots 1^{\mathrm{iii}}$	0.93	2.59	$3.5019(17)$	166

Symmetry codes: (ii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x-1 / 2, y-1 / 2, z-1$.

supplementary materials

Fig. 1

Fig. 2

